Adapting Verified Compilation for
Target-Language Errors

A THESIS PRESENTED BY
PrATAP SINGH
TO
THE DEPARTMENT OF COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
BacHELOR oF ARTS wiTH HONORS
IN COMPUTER SCIENCE

ADVISOR: PROFESSOR STEPHEN CHONG
HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS
NoOVEMBER 19, 2021

Thesis advisor: Professor Stephen Chong Pratap Singh

Adapting Verified Compilation for Target-Language Errors

ABSTRACT

Verified compilers have the potential to greatly improve users’ trust in their code by pro-
viding machine-checked proofs of compiler correctness. In recent years they have become
increasingly sophisticated and practical, compiling programs from convenient high-level pro-
gramming languages to realistic target architectures and platforms. Ideally, compiler correct-
ness requires every externally visible behavior of the compiled code to also be a valid behavior
of the source it was compiled from. However, modern compilers often translate between
languages with very different semantics; in particular, the target language may have error con-
ditions, such as memory exhaustion, integer overflow, and process interruption, that are not
expressed or modeled at the source level.

In this work, we explore and evaluate the design space faced by verified compiler writers
when adapting their systems for target-language errors. We provide template compiler cor-
rectness theorems that account for target-language errors in different ways. We consider a va-
riety of target-language errors that appear in real-world target platforms, examining ways to
modify each component of the verified compiler to adapt for them. Among these errors, we
include failure modes of external components of the system that affect the running compiled
code, such as process interruption and I/O device failure. We describe adaptations to a stan-
dard compiler correctness proof technique that allow verified compiler writers to prove one
of our proposed correctness theorems when the target language contains limited nondeter-
minism introduced by target-language errors. Finally, we discuss ways to weaken a traditional
compiler correctness statement to obtain guarantees that hold for all executions, including
those that encounter target-language errors. Our systematization helps verified compiler writ-
ers decide how to appropriately account for target-language errors, allowing them to expose

correctness guarantees that more accurately reflect the real-world behavior of compiled code.

ii

6

Contents

INTRODUCTION

1.1 Ourcontributions

BACKGROUND

21 Preliminaries
2.2 TheCoqproofassistant
2.3 Verified compilation L oL oo

CHARACTERIZING THE DESIGN SPACE

31 Typesofadaptation
32 Typesoferrors.
3.3 Proof technique for nondeterminism

WEAKER GUARANTEES IN THE ABSENCE OF CORRECTNESS

41 Examplepredicates Lo L

RELATED WORK

5.1 Complextargetmodels o o 0oL
5.2 Separatecompilation Lo Lo o Lo oL
5.3 Securecompilationo L Lo L

CONCLUSION

APPENDIX A A VERIFIED COMPILER FOR A NONDETERMINISTIC TARGET

Al Correctness theorem and proof structure

REFERENCES

iii

N

o O\ &

16
20
24
40

46
49

51
51
53
55

57

59
65

69

Acknowledgments

To my advisors, Professor Stephen Chong and Dr. Shrutarshi Basu: thank you for your
deeply insightful guidance and constant support. Your patience and capacity for getting me
unstuck time and again were fundamental to my being able to complete this project. Steve,
thank you for teaching the classes that sparked my interest in programming languages and
compilers, and for shaping my inchoate ideas into a tractable and meaningful project. Basu,
thank you for your perceptive advice and careful feedback on all aspects of this work, from
its high-level direction to the vagaries of Coq.

To Professor Nada Amin: thank you for introducing me to Coq and formal verification,
for exposing me to the power and elegance of programming languages ideas and techniques,
and for serving as my thesis reader.

To Professor Adam Chlipala: thank you for your helpful guidance on thorny issues I en-
countered with coinduction in Coq, as well as for teaching the class that showed me how to
think about formal verification of programs.

To the members of the Harvard Programming Languages group: thank you for welcoming
me into your community and for your insightful questions and feedback on this project.

To Dr. Holly Hedgeland: thank you for setting me on the path that has brought me to this
point. I will forever be grateful for your confidence in me.

To Katherine, Nivi, Paige, Emily, and Tamara: thank you for taking the time to read and
give me feedback on each draft of this thesis. Your thoughtful comments have made this doc-
ument so much more readable and coherent.

To Katherine, Nivi, Tamara, Brinkley, Paige, Emily, Dhilan, Esther, Simon, Alex, and Hari:
thank you for your constant support and friendship through the joys and struggles of this
thesis. Your kindness, humor, and generosity have never failed to uplift me, and it is thanks
to you that my time at Harvard will always be among my most cherished memories.

To my family, near and far: thank you for filling my life with joy, comfort, and warmth.

To Vikram: thank you for being my deepest friend, and for always being present for me.

To Mama and Papa: thank you for your immeasurable love and care, for your unwavering

support and encouragement, and for helping me become who I am today.

iv

Can you trust your compiler?

Xavier Leroy [28]

Introduction

Verified compilers are compilers with machine-checked proofs of compiler correctness: the
property that the code the compiler emits has the same behavior as the source program it was
compiled from. They promise to greatly increase users’ trust in the executables they produce.
As such, they have become increasingly prevalent and sophisticated in recent years, seeing us-
age in the development of a variety of safety-critical systems. For example, the CompCert
verified C compiler was recently integrated into the build pipeline of engine-control-unit

software deployed in diesel generators in nuclear power plants [24]. The compiler correct-

ness theorem of CompCert was combined with static analyses at the source and target level
to produce a more trustworthy executable output.

The growing use of verified compilers necessitates a careful understanding of exactly what
guarantees these tools provide, under what conditions those guarantees hold, and what po-
tentially unexpected behaviors may occur in compiled code without violating those guaran-
tees. Even CompCert, for example, has been found to contain miscompilation bugs that lie
outside of the region covered by its correctness theorem [45].

Existing compiler correctness theorems, both in the literature and in production compilers
such as CompCert, typically simplify the model of the target language or machine to avoid
dealing with corner cases that are deemed too difficult to reason about, too obscure, or oth-
erwise not worth considering. Many such corner cases are associated with errors or failure
modes of a target machine or architecture, which cannot be represented or reasoned about at
thelevel of source programs. For example, consider memory exhaustion: existing verified com-
pilers often assume that target memory allocations cannot fail [43], allowing them to avoid
reasoning about memory exhaustion errors. This means that the verified compiler provides
no guarantees at all for a target-language execution that does encounter a memory exhaustion
error.

In this work, we study adaptations to standard verified compilation systems that can ac-
count for target-language errors, allowing us to relax some of these simplifying assumptions.
Based on work in the field (elaborated in Chapter 5), we can identify several important con-
siderations for designing a verified compiler and its accompanying correctness theorem when

the target has a complex error model. These include:

* Precision. The correctness theorem should give strong guarantees about the behavior
of compiled programs, ideally with only small relaxations of standard statements of
compiler correctness.

* Simplicity. The correctness theorem should be straightforward to understand so that
users of the compiler can easily reason about the guarantees that are provided for their
compiled code, and can straightforwardly compose those guarantees with other guar-
antees produced by verification at other stages in the code creation pipeline.

* Realism. The machine model should be faithful to the actual machine (be it hardware
or a language runtime) on which the target code will be run.

* Provability. It should be possible to prove that the compiler satisfies the theorem, ide-

ally using standard compiler correctness proof techniques.

In practice, it may be impossible to entirely eliminate all cases of failure mode mismatch—
a compiler for identical source and target languages is hardly of much interest. However, a
more in-depth understanding of the considerations involved when targeting realistic machine
models would help us move closer to the goal of a fully end-to-end verified system. Our work
addresses one aspect of this goal: we aim to provide a simple and principled systematization
of the design space of compilers and compiler correctness theorems when target languages

have complex error models.

1.1

OUR CONTRIBUTIONS

Our contributions are as follows:

* We provide template compiler correctness theorems for target languages with com-

plex error models, accounting for errors at the level of execution traces or of whole
programs. These theorems balance the four criteria in different ways, and each may be
suitable in different situations. This contribution is presented in Section 3.1.

We describe and compare a variety of adaptations to address different types of target-
language errors when designing a verified compiler and its associated correctness theo-
rem. We consider a wide range of specific errors that occur in practical machine mod-
els, including floating-point imprecision, integer overflow, memory exhaustion, and
process interruption. For each of these, we discuss ways to adapt each of the major
components of a verified compilation system in order to account for the error. This
contribution is presented in Section 3.2.

We present a modification to a standard compiler correctness proof technique that
accounts for the limited nondeterminism introduced by target-language errors. We
demonstrate that our modification does not impose a significant additional proof bur-
den on the verified compiler writer. To validate our proof technique, we implement
a verified compiler for a target with process interruption and prove in the Coq proof
assistant that our compiler satisfies one of our proposed correctness theorems. This

contribution is presented in Section 3.3.

* We consider ways to weaken traditional compiler correctness to obtain guarantees of
basic safety properties that hold over all target-language executions, including those
that encounter errors. Such weaker guarantees can prevent unreasonable outcomes
in cases where standard definitions of correctness cannot hold. This contribution is

presented in Chapter 4.

The structure of this thesis is as follows. Chapter 2 gives background on verified compi-
lation and defines the formalisms used in the rest of the thesis. Chapter 3 gives a systematic
description of the design space of errors and adaptations, and evaluates which responses are
most suited for each error. Chapter 4 describes weaker guarantees that can hold even in the ab-
sence of traditional compiler correctness results. Chapter 5 discusses related work, and Chap-

ter 6 concludes and proposes avenues for future work.

Background

In this chapter, we provide background on compiler verification and proof assistants, and

give definitions and notation used in the rest of the thesis.

2.1 PRELIMINARIES

Informally, the purpose of a compiler is to translate a source program into a target program
with the same meaning. In order to reason about compiler correctness, then, we must make

precise the notion of the “meaning” of a program. To do so, we must specify what proper-

ties of program execution we wish to preserve from source to target, and we must define a
mapping from programs to these properties.

We follow past work [27, 43] in defining the behavior of a program as a trace of externally
visible events. Depending on the language and system under consideration, these events could
include calls to external functions, system calls, or even direct interaction with hardware. We
choose this model for program behavior since during compilation, we generally do not re-
quire internal details of program execution such as data representation or execution time to
be preserved. Compiler users can generally only observe their programs’ explicit interactions
with the outside world, so it is sufficient for the compiler to preserve these interactions ap-

propriately.” Let:

* Event be the set of externally visible events that a program can emit;

Trace be the set of all finite traces of events in Event;

Trace™ be the set of all (finite or infinite) traces of events in Fvent, s.t. Trace C Trace™;

form € Trace,t € Trace™,let m < tif and only if m is a finite prefix of ;

fore € Event,t € Trace™,lete:: t be the trace consisting of ¢ followed by .

form € Trace,t € Trace™,let m 4+ t be the trace consisting of of 7 followed by z.

We must now specify the mapping from programs to their traces. We do so by defining
small-step operational semantics [37] for our source and target languages, specifying the pos-
sible atomic transitions between states of an abstract machine during execution of a program.

We specify the semantics of a language L with arelation — @ S; X (Event U {€}) X S

"Note that certain security properties such as cryptographic constant-time [6], which (informally) requires
that all executions of a program perform the same number of steps, cannot be reasoned about at the level of
externally visible events. Such properties are beyond the scope of this thesis.

7

where S; is the set of states of the abstract machine of L and € denotes a silent event (i.e.,
we say a transition emits event ¢ if it does not have any externally visible effects). We use the
notations — ¢ todenote (7,¢,¢/) € —, ande — ¢ todenote (7,6,0) € —.

We can further define the relation —* : S; X Trace X S; as the reflexive transitive

closure of —, using the following three rules:

g—d oL g oL

s, o—* o o !

To reason about infinite executions, we define the relation —>° : S; X Trace™ as the

infinite transitive closure of —, using the following two rules:

c— o J > o3 >

t et
og—>® g—

Here, the double bar indicates that the rules are to be interpreted coinductively [40]; that
is, —»> may be constructed as the greatest fixed point of the set defined by this rule.

The distinction between finite and infinite traces is not central to this work, though prov-
ing preservation of termination and nontermination is important when verifying a compiler

in practice. We therefore define a final relation ~» : L X Trace™ as follows:

Definition 1 (- ~~-). Forlanguage L, P € L,t € Trace™, let P~ thold if and only if

(30’1:, Jp—t>*0'1:) V (0'p—t>oo)

where op is the starting state of language L when running program P, and o is an irreducible

state of language L from which no further steps are possible.

Informally, P~ ¢ means that program P admits trace #, i.e., ¢ is a possible behavior of P.
Note that P~ m, where m € Trace, does not require that P terminates: P could diverge
silently after emitting the finite trace 7.

Finally, we define the rest of the notation we use in this thesis. To help distinguish the
various elements of the verified compiler system, we adopt a typographical convention in-
spired by Abate et al. [1], Patterson and Ahmed [36], and others: blue, sans-serif font denotes
source-language elements, red, bold font denotes target-language elements, and black, italic
font denotes common elements between source and target. We now define notation for the

compiler and associated components. Let:

* [-]c denote compilation using compiler C;

P~ t denote that program P admits trace

Source and Target be the sets of source- and target-language programs;

* err be a target-language error of interest.

2.2 THE COQ PROOF ASSISTANT

Formal verification of software has been a goal of computer science research for decades, and
recent years have seen the development of a growing number of tools and techniques for
this problem. Proof assistants are a class of such tools: they allow users to construct machine-

checked proofs of theorems in a computational representation of some logical system. Unlike

a theorem proved by hand, for which mathematicians must manually examine the proof for
correctness before trusting it, theorems proved in a proof assistant can be trusted without
reading the proof itself. As long as one trusts the logical kernel of the proof assistant, which
is typically a small program implementing a simple logical calculus, one can trust any proof
that it accepts as correct [11]. Popular existing proof assistants include Coq [12], Agda [3],
Isabelle/HOL [22], and Lean [26].

Our implementation (described in Appendix A) was developed using the Coq proof as-
sistant. Coq consists of three languages: Gallina, a pure, dependently-typed functional pro-
gramming language with ML-like syntax; L.,., a language of zactics that tell Coq how to con-
struct low-level proof terms for theorems; and the Vernacular, a language of commands to
the Coq kernel. Additionally, Coq supports extraction to OCaml, Haskell, or Scheme [38],
allowing users to write programs in Gallina, prove properties of these programs, and extract
an executable which satisfies those properties. This pattern requires users to trust both the
extraction mechanism and the compiler for the extraction language. Ongoing work [4] aims
to verify these components.

Coq has been used for a variety of seminal formal verification projects. These include the
CertiKOS verified operating system kernel [19], the FSCQ verified crash-safe file system [10],
and several verified implementations of cryptographic protocols [5, 7, 14]. One of the most
significant verification projects conducted using Coq is the CompCert verified C compiler,

which we discuss in Section 2.3.

10

2.3 VERIFIED COMPILATION

Compilers are among the most complex pieces of software that developers regularly interact
with. For example, the GCC compiler contains over 15 million lines of code [16]. Despite ex-
tensive testing and the use of software engineering best practices, the size and complexity of
compilers render them vulnerable to bugs and programming errors. Some of these bugs may
only cause crashes or poor performance when the compiler is run, but the most pernicious
compiler bugs are those that cause the compiler to silently emitincorrect code. Yang et al. [45]
tested eleven different industrial-strength C compilers, some open-source and some commer-
cial, and found that every single one had bugs that resulted in silent miscompilation. This dis-
concerting result suggests that new development techniques are required to build compilers
that generate correct code.

The idea of giving a formal proof of correctness for a compiler dates back to 1967, when
McCarthy and Painter [31] gave a pen-and-paper proof of correctness for a compiler from
arithmetic expressions to a simple single-register abstract machine. Five years later, Milner and
Weyhrauch [32] mechanized part of this proof in the LCF proof assistant. This was among
the earliest significant uses of a proof assistant to verify a property of a program.

More recently, the CompCert project [27, 28] was the first to develop a practical verified
compiler. CompCert compiles a large subset of C to several common assembly languages, in-
cluding PowerPC, ARM, and x86. The compilation passes are implemented as Gallina func-
tions and proved correct using Coq. CompCert’s proof of correctness covers about 90% of

the compiler, including all of the translation and optimization passes. From a correctness

11

point of view, Yang et al. [45] found only two miscompilation bugs in CompCert, and both
turned out to originate in the unverified components of the code base. CompCert has been
used for a handful of safety-critical industrial projects, including the development of fly-by-
wire systems and flight control software.” It was recently integrated into the build pipeline
of engine-control-unit software deployed in diesel generators in nuclear power plants [24],
where its correctness theorem was composed with source-level static analyses to move closer
to an end-to-end correctness guarantee for the whole system.

CakeML [25, 43] is a verified compiler for a large subset of Standard ML, built and verified
using the HOL4 proof assistant. Unlike CompCert, CakeML is bootstrapped: it can compile
itself [25]. It accomplishes this using a verified frontend that compiles HOL4 functions into
CakeML abstract syntax trees; the compiler (which is essentially a large HOL4 function) can
then be passed into this frontend and compiled.

In addition to these two well-known examples, there is significant existing work on both
the theory of verified compilation and on developing implementations of verified compilers

using various tools. We survey some of this work in Chapter 5.

2.3.1 COMPILER CORRECTNESS THEOREMS

This thesis studies adaptations to the four major components of a verified compiler system:
the source language, the target language, the compilation function, and the correctness theo-
rem and proof. The first three of these should be familiar from study of any compiler (verified

or not), so we elaborate the standard forms of compiler correctness theorems below.

TSee https://www.absint.com/compcert/ for details.

12

https://www.absint.com/compcert/

Compiler correctness theorems are generally based on the notion of semantic preservation,
which requires that the compiled code has the same behavior as the source program. There
are several possible ways to state a semantic preservation theorem. These can be classified
according to the specific relation they provide between the valid behaviors of the source and

target programs, as follows [27, 36]:

FORWARD SIMULATION. Forward simulation theorems take the following form:
Theorem 1 (Forward simulation). VS € Source, V¢ € Trace™,S ~t = [S]c~ ¢

That is, every valid behavior of the source program is also a valid behavior of the compiled
target program. Forward simulation theorems are generally easy to prove: typically, they are
proven by induction on the derivation of S ~ #[27]. However, forward simulation theorems
allow the target program to have more behaviors than the source semantics allow, making
them potentially unsatisfactory for verified compiler users. Furthermore, if the source lan-
guage includes nondeterminism or undefined behavior, the compiler must emit target code

that admits all possible source behaviors.

BACKWARD SIMULATION. Backward simulation theorems take the following form:
Theorem 2 (Backward simulation). VS € Source, Vr € Trace™, [S]c~+t = S~ ¢

That is, every valid behavior of the compiled program is also a valid behavior of the source
program. Backward simulation theorems provide desirable correctness guarantees, especially
when composed with guarantees about the source program: if the behavior of the source

program satisfies some property, then the behavior of the compiled code is guaranteed to have

13

the same property. In the general case, however, proving a backward simulation requires back-
translation: constructing a source state that corresponds to every target state in the execution
of acompiled program, effectively inverting the compilation function. This can make proving

backward simulation difficult.
BrsiMULATION. Bisimulation theorems take the following form:

Theorem 3 (Bisimulation). VS € Source, V¢ € Trace™,S ~ ¢t <= [S]c~ ¢

That is, bisimulation requires both forward and backward simulation. It is the strongest cor-
rectness guarantee, but is typically too strong for practical source and target languages: it

requires that both languages feature exactly the same nondeterminism.

Ideally, we would like to prove backward simulation correctness theorems without defin-

ing a back-translation. To do so, we appeal to determinism in the target language [8]:

Definition 2 (Determinism). Language L is deterministic if and only if:
VP € LNt t € Trace™, P~t => P~t{ = t=1¢.

Theorem 4. If Target is deterministic, then Theorem 1 implies Theorem 2.

Proof. LetS € Source and ¢ € Trace™ such that S ~~ #. By Definition 1, we have [S]¢ ~ .
Now, let 7 € Trace™ such that [S]¢ ~~ #. By determinism of Target, we have # = r. There-

fore S ~~ 7, as required. O]

Theorem 4 allows us to prove forward simulation for our compiler, as well as determinism

of the target language, and obtain backward simulation as desired. This is the approach taken

14

by CompCert [27]. In practice, most compilation targets can be modeled as deterministic
languages. However, some of the errors considered in this work may make the target language
nondeterministic; we discuss ways to adapt this standard proof technique to account for such

forms of nondeterminism in Section 3.3.

15

Characterizing the design space

In this chapter, we present our systematization of the design space of adaptations to a veri-
fied compiler system that account for target-language errors. Section 3.1 discusses the general
classes of adaptations, Section 3.2 explores how these adaptations can be instantiated for par-
ticular target-language errors, and Section 3.3 discusses how to adapt compiler correctness
proof techniques for our modified correctness theorems.

There are four major components in a verified compilation system: the source language
and semantics, the target language and semantics, the translation from source to target, and

the compiler correctness theorem and proof. Each component can be adapted for target-

16

language errors: we can adjust the source language to be more compatible with the restrictions
of the target, we can use a less realistic target semantics to simplify reasoning about errors, we
can modify the compilation strategy to avoid generating the error, or we can prove a more
precise correctness theorem that explicitly accounts for the error. Some of these adaptations
may make sense for particular target-language errors but be inapplicable or even absurd for
others. In general, there is no adaptation that accounts for all target-language errors equally
well. Instead, there is a space of design choices to be explored when building a verified com-
piler for a complex target language. We now explicitly enumerate this design space, exploring
how different adaptations account for different target-language errors.

Table 3.1 summarizes the design space for a verified compiler with a target error model
that differs from that of the source. We consider seven different types of target-language er-
rors, each having distinct properties requiring different adaptations. For each error, we con-
sider seven adaptations for the verified compiler system. Each cell in the table summarizes the
particular design that results from applying the technique in the column to the error in the
row. Several of the resulting designs are nonsensical: they would break the semantics of some
component of the verified compiler, or would require unrealistic assumptions. We include
(in 7talics) these absurd designs for the sake of comparison, and to underscore the fact that
there is no single approach that appropriately accounts for all errors. On the other hand, some
designs are particularly appropriate or commonly used to account for the error in question;

these are shown in bold.

17

81

Error Modify source | Modify target | Modify compi- | Per-execution | Prefix-correct | Per-program Weaken value
lang. lation strategy | theorem theorem theorem relation
Memory Allow source | Assume Garbage Any Any Static N/A
exhaustion memory machine has collection (does | execution execution is resource-
allocation to infinite not allow any | that doesn’t correct until | usage analyses
fail memory guarantees) exhaust it runs out of | such as cost
memory is memory semantics
correct
Integer Source Target Compile Any execution | Any execution | Interval Map source
overflow language with | machine with | mathematical | that never is corvect until | analysis integer to its
fixed-width mathematical | integers to causes overflow | integer value modulo
integers integer bignums is correct overflow occurs the max
registers integer
Floating-point | Source Target Compile Any execution | Any execution | Statically Map source
imprecision language with | machine with | rationals to in which no is correct until | compute an rational x to
floating-point | rational- (numerator, | float differs by | some float approximation | [x — &,x + €]
numbers number denominator) | more than & differs by more | bound e
registers pairs from its “true” | than € from its
value is correct | “true” value
Unrepresent- | Source input() | N/A Compile Any Any N/A Map one
able input reads only byte source and execution in execution is source value
strings target values | which inputs | correct until to many

to be identical

pass
target-level
validation is
correct

target-level
validation

fails

target values

61

Error Modify source | Modify target | Modify compi- | Per-execution | Prefix-correct | Per-program Weaken value
lang. lation strategy | theorem theorem theorem relation
I/0 failure Allow I/0 Assume 1I/0 Bufferand try | Any Any N/A N/A
calls to fail never fails I/O operation | execution in execution is
again which all I/O | correct until
succeeds is an I/0 failure
correct
Dynamic Allow Assume Ty to Any Any N/A N/A
linking failure | dynamic link | /inking never | download the | execution in execution is
loading to fail | fa:ls linked file which all correct until
froma linking the first
repository succeeds is linking
correct failure
Process Add constructs | Run on a Trap the Any Any N/A N/A
interruption to handle machine with | interrupt and | execution execution is
interrupts no OS and no | continue which is not | correct until
other processes interrupted is | it is
correct interrupted

Table 3.1: The design space of target-language errors and adaptations to address them. Cells in bold indicate cases where this approach is particularly appropriate for this error. Cells in

italics indicate cases where this approach is nonsensical for this error. Due to space constraints, a detailed description of each design is deferred to Section 3.2.

3.1 TYPES OF ADAPTATION

We now define the adaptations listed in Table 3.1, giving template theorem statements for
the approaches that modify the compiler correctness theorem. Detailed descriptions of how
each adaptation is instantiated for particular target-language errors are deferred to Section 3.2.
Each adaptation offers different tradeoffs among the considerations of precision, simplicity,

realism, and provability (as we describe in Chapter 1); we describe these tradeofts here as well.

MODIFY SOURCE LANGUAGE. These adaptations add to, remove from, or change parts of
the source language and semantics to be more compatible with the target-language constructs
that cause the error in question. Such adaptations often result in simple and easily provable
correctness theorems, potentially at the cost of convenient, desirable high-level language ab-

stractions.

MoDi1rY TARGET. These adaptations change the model of the target language used for ver-
ification. Note that we do not consider modifications to the target language itself: those often
require changes to hardware or operating systems, and are thus beyond the scope of a com-
piler. These adaptations typically result in simple and easily provable correctness theorems,

but lose some realism.

MODIFY COMPILATION STRATEGY. These adaptations compile source constructs in ways
that avoid triggering the target-language error. These adaptations typically result in simple

correctness theorems, but may incur a performance penalty or require a more difficult proof.

20

Furthermore, it may not be possible to develop a compilation strategy that avoids the error

in a/l cases, as would be required for a compiler correctness guarantee.

The remaining four adaptations modify the compiler correctness theorem, maintaining a re-
alistic target model and trading off the other three considerations. Following existing work
(as described in Section 2.3.1), we take Theorem 2, the backward simulation correctness the-

orem, as the “ideal” theorem which we adapt to account for target-language errors.

PER-EXECUTION CORRECTNESS THEOREM. This theorem states that any target-level trace
thatdoes notencounter the error is also allowed by the source. Note that it gives no guarantees
aboutany target trace that terminates with the error, including before the error occurs in that

trace.

Theorem 5 (Per-execution correctness theorem). VS € Source, Ve € Trace™,
[Slc~t = (S~ ¢V Im € Trace,t = m ++|err])

This theorem is relatively easy to prove and simple to understand, but it is quite imprecise—
it allows compiler C to emit code that has any finite behavior and then triggers the error,

without regard to the source program.

PREFIX-CORRECT THEOREM. This theorem refines Theorem S by additionally requiring
that target traces that end with the error are correct up until the error occurs. That is, target
traces that are not also source traces must consist of a prefix of a valid source trace followed

by the error.

21

Theorem 6 (Prefix-correct theorem). VS € Source, V¢ € Trace™,
[Slc~t = (S~ ¢tV (Im € Trace, 3" € Trace™, t = m++err] NS~ m++7))

In general, Theorem 6 provides an improvement in precision compared to Theorem 5, with
minimal loss of simplicity or provability. We use a specialization of this theorem in our im-
plementation of a verified compiler for a nondeterministic target language, as discussed in

Section 3.3 and Appendix A.

PER-PROGRAM CORRECTNESS THEOREM. This theorem gives the full semantic preserva-
tion guarantee of Theorem 2, but only for programs that can be proven statically to never
encounter the error. Define a source-level predicate check(S, . . .) that holds for all programs

S such that [S]¢ is guaranteed not to encounter err.

Theorem 7 (Per-program correctness theorem). VS € Source,
check(S,...) = (V¢ € Trace™, [S]c~t => S~1)

The predicate check may take other parameters: these may include machine properties or
bounds on certain inputs. Users of compiler C must prove check(S, . . .) for their program S
in order to get the correctness guarantee; in some instances this can be done by an automated
static analysis. This theorem is simple to understand, but the complexity of check affects how
easy it is to prove—we may need to use details of the definition of check in the proof to show

that programs that pass check never encounter errors. Moreover, this theorem may be quite

22

imprecise, since check may conservatively exclude programs that would not have triggered

the error.

WEAKENING THE TRACE RELATION. The following theorem, from Abate etal. [1], allows
source and target languages to have different sets of observable events. Let Trace and Trace™
respectively be the sets of finite and possibly infinite traces containing source-level events, and
let Trace and Trace™ respectively be the sets of finite and possibly infinite traces containing
target-level events. Let =7 C Trace™ x Trace™ be a relation between source-level and

target-level traces.

Theorem 8 (Trace-relating correctness theorem [1]). VS € Source, Vt' € Trace™,
[Sle~~t = 3t € Trace™, t~rt/ AS~t

Abate et al. [1] show that with appropriate instantiations of /27, this theorem can encode a
variety of existing compiler correctness theorems, including both Theorems 5 and 6. How-
ever, Theorem 7 cannot be encoded by choosing a particular ~, since Theorem 8 makes
guarantees at the level of individual executions rather than whole programs. In this work, we
will generally consider choices of ~7 generated by lifting a relation =), between source and
target values to the level of traces. For example, if the source language has booleans but the
target language has only integers, we could instantiate Theorem 8 with ~7 generated by map-
ping ~y, = {(true, 1), (false, 0)} to verify a compiler that translates booleans into integer
values 1 and 0. When ~27 is based on a simple lifting of ~y,, this theorem is fairly simple and

precise, but it may be hard to prove if =y, is not one-to-one [1].

23

3.2 'TYPES OF ERRORS

Having defined the classes of adaptations in the design space, we now explore how each adap-
tation can be instantiated for particular target-language errors. We define and discuss each of
the errors listed in Table 3.1, evaluating how well each adaptation can account for each error.
Note that in general, we do not discuss using the per-execution correctness theorem (The-
orem 5), since its properties and suitability are essentially identical to those of the stronger
prefix-correct theorem (Theorem 6). We also eschew discussion of modifying the target se-
mantics in cases where it simply makes an unrealistic assumption about the underlying target

machine.

3.2.1 MEMORY EXHAUSTION

Real-world computers have finite memory, requiring programmers to deal with the possi-
bility of memory exhaustion. Low-level programming languages typically feature a memory-
allocation primitive such as malloc in C, which can return an error value to indicate failure.
However, high-level source languages generally do not provide precise information about
the memory costs of operations, and compilers for such languages may use memory in un-
expected ways (e.g., by allocating heap memory to store local variables). More importantly,
the semantics of high-level languages may assume infinite memory, with no way to express
an out-of-memory condition. This presents an issue for verified compilers: out-of-memory
errors cause the target program to behave in a way that is not representable in the source

semantics.

24

Perhaps the easiest solution to this problem is to avoid it entirely: modify the target to
assume infinite resources, such that the target-language semantics never generate the memory-
exhaustion error. We can then retain the simple compiler correctness guarantee of Theorem 2.
Notably, CompCert uses essentially this approach [30]: its memory model assumes that the
allocation primitive cannot fail. Since most memory allocation in C is handled by the source
programmer via functions such asmalloc that can fail, this assumption is only relevant when
reasoning about the allocation of stack frames.

However, this adaptation sacrifices realism if the target is a practical machine or architec-
ture that we wish to verify against. It may also not be possible if the target language has finite-
sized addresses: for example, on a 32-bitarchitecture, a program that allocates more than 4GB
of memory will be unable to reference some of the addresses it has allocated.” Furthermore,
if the target is an intermediate language in a compilation chain, we have merely pushed the
problem further down that chain. We therefore do not consider this adaptation suitable for
high-level programming languages that obscure details of memory consumption.

Seeking to avoid the issue in a different way, we might try to modify the compilation strat-
egy by running a garbage collection routine when memory is exhausted. In practical settings,
this is likely to be a sensible design choice. However, it quickly falls short in a verification con-
text: it is always possible to construct a pathological program in which all allocated memory
is still live at the time of exhaustion, such that the garbage collector is unable to free any mem-

ory. For example, one could imagine a program that allocates an extremely large linked list,

*CompCert avoids this issue by raising a compiler error and refusing to compile programs that request a
stack frame with more than 4GB of local variables [27].

25

such that every node is always live. Thus, modifying the compilation strategy is not a useful
adaptation for memory exhaustion errors.

A potentially more practical strategy is to modify the source language to explicitly rep-
resent memory exhaustion errors. This could be done through error-reporting mechanisms
such as exceptions. For example, Java [18] has an OutOfMemoryError which can be thrown
at various points in the program. Notably, the OutOfMemoryError can be thrown during
operations such as implicit boxing conversion (between primitive types and their wrapper
classes); Java programmers might not be aware that such operations require any memory al-
location. This error can in principle be caught, although the Java 16 specification states that
“most simple programs do not try to handle errors” such as OutOfMemoryError. Many other
popular high-level languages, including OCaml, Python, JavaScript, and C#, take a similar ap-
proach of reporting memory-exhaustion errors via existing source-language constructs. This
approach is practically useful, as evidenced by its widespread use.

However, modifying the source language to deal with memory exhaustion may negate
some of the conveniences of a high-level language. We can instead state and prove a modi-
fied prefix-correct theorem for our compiler, making explicit exactly what guarantees the
compiled code obeys. This is the approach taken by many existing verified compilers. For
example, CakeML [43] originally dealt with memory exhaustion by proving a correctness

theorem equivalent to Theorem 6. Specifically, they show a theorem equivalent to

VS € Source,Vr € Trace™, [S]c~t =

(S~ ¢V (3m € Trace, 3¢ € Trace™, t = m ++[OOM]| A'S ~ m ++1))

26

where OOM is the out-of-memory error.” CakeML users enjoyed preservation of safety prop-
erties, but not liveness properties [17], since the compiled code may prematurely terminate
due to memory exhaustion. This theorem gives a clear guarantee both for executions that
encounter memory exhaustion and those that do not, and the modification to the theorem
entailed negligible additional proof effort.

Alternatively, it is possible to adapt the per-program correctness theorem for memory
exhaustion using static analysis. There are a variety of resource-usage analyses for source pro-
grams which can be used to rule out memory exhaustion errors at compile time [17, 34].
These analyses compute a sound approximation to the maximum memory usage of the pro-

gram, and can be incorporated into Theorem 7 as follows:

VS € Source, dsz, safe_for_space(S,sz) = Vt € Trace™, [S]c .t = S~ ¢

where the predicate safe_for_space(S, sz) holds whenever [S]¢ will use at most sz bytes of
memory, and ~~,, denotes execution with at least sz bytes of memory available. CakeML re-
cently switched to a theorem of this form that preserves liveness properties [17]: users pro-
vide a memory bound for their code and prove the bound correct against a cost semantics.
This stronger guarantee does not come for free: the premise safe_for_space(S, sz) adds a
new proof burden for CakeML users. Moreover, the cost semantics required for this proof
are not for the source language but for an intermediate language whose memory model and
semantics are likely unfamiliar to users. This makes proofs of memory safety quite difficult

and verbose: Gémez-Londono et al. [17] found that proving memory safety for a seven-line

See Figure S and the definition of extend_with_resource_limitin Tan etal [43].

27

implementation of the yes utility required over 1000 lines and 8 person-days of proof effort.
Other analyses may be simpler or even automated but compute more conservative approxi-
mations to the memory usage of the compiled code. Verified compiler designers seeking to
use the per-program correctness theorem can choose analyses that make different tradeofts
between precision and provability. Having chosen an analysis, this theorem provides a simple
guarantee for end users, and depending on the details of the safe_for_space premise, writing
and verifying such a compiler may be relatively straightforward.

Note thatitis impossible to weaken the value relation to account for memory-exhaustion
errors. There is no relation on values in the source and target that can account for memory
exhaustion, since that is a property of a whole program execution. As discussed in Section 3.1
and by Abate et al. [1], it is possible to define a trace relation that captures the prefix-correct

theorem of the first version of CakeML.

3.2.2 INTEGER OVERFLOW

One of the most common sources of bugs in real-world programs is dealing with integer over-
flow [33]. High-level source languages would ideally expose arbitrary-precision integers as
primitives in the language, so as to match the programmer’s intuitive understanding of the
arithmetic properties of mathematical integers. However, realistic target architectures sup-
port only fixed-width machine integers, whose arithmetic properties differ in subtle ways
from mathematical integers. The resulting errors can be particularly difficult to debug.

The most common approach to this problem is to modify the source language to reflect

the limitations of the target language. Many high-level languages like Java, OCaml, Haskell,

28

and others provide multiple integer types with fixed bit widths, allowing programmers to
select the width they need to represent particular numbers in their code. This approach is
well-established and suitable for many source languages, but similar to explicit memory man-
agement, it may negate some of the conveniences of programming in a high-level language.
Indeed, languages such as Python do provide arbitrary-width mathematical integers [39], so
we explore other adaptations that may allow us to do so below.

We can adapt the prefix-correct theorem to account for integer overflow. To do so, we
would compile source-level mathematical integers to target-level machine integers with fixed

bit width, then prove the following adaptation of Theorem 6:

VS € Source,Vr € Trace™, [S]c~t =
(S~ ¢V (3m € Trace, 3¢ € Trace™,t = m++[OF] AS~> m++1))

where OF is the integer-overflow error. This theorem stipulates that every compiled program
must either have the same trace as the source, or have the same trace as a finite prefix of the
source followed by OF. In particular, since OF cannot be generated by the source program, ev-
ery program that encounters integer overflow cannot have any observable behavior after that
error. Unfortunately, this theorem is nonsensical and not useful: by making integer overflow
effectively a fatal error, it forces programmers to use the mathematical integers of the source
language as if they were machine integers.

Adapting the per-program correctness theorem does not produce a better result. We
would still compile source mathematical integers to machine integers, but additionally we
would provide a premise no_overflow(S, #) which states that when given the inputs of trace

t, source program S does not encounter the integer overflow error. The correctness theorem

29

would then be:
VS € Source, Vt € Trace™, no_overflow(S,t) = [S]c~t = S~¢

With this theorem, source programmers still must use the source mathematical integers as
machine integers. Moreover, in order to get any correctness guarantee at all they have to stat-
ically prove a property of every possible execution trace of the source program. This shows
that good approaches for memory exhaustion may not translate to good approaches for inte-
ger overflow, exemplifying the need for a comprehensive enumeration of the design space of
adaptations.

Instead, compilers for source languages with mathematical integers can modify the com-
pilation strategy to support them directly in the target language. For example, Python rep-
resents a mathematical integer as an array of machine integers, * with arithmetic operations
defined accordingly. Many other languages provide “bignum” data types or libraries which
expose arbitrary-precision integers implemented in this way. There is a performance cost to
this design, especially since increasing the size of the bignum array may require a new mem-
ory allocation. However, optimizations, such as dynamically switching to bignums when a
machine-integer value overflows, can reduce this cost in practice.

When verifying a compiler for these languages, the verifier must prove that the implemen-
tation of arithmetic and logical operations on bignum types is faithful to the semantics of
mathematical integers as defined in the source language. While this task may be tedious, it

does not require any novel or unusual verification techniques and should be feasible. Having

See https://github.com/python/cpython/blob/main/Include/cpython/longintrepr.h.

30

https://github.com/python/cpython/blob/main/Include/cpython/longintrepr.h

proved correctness of the bignum implementation, we can prove a general correctness the-
orem that does not mention the integer-overflow error at all. However, since bignum arith-
metic may require memory allocation, this verified compiler would also require one of the
modified theorems for memory exhaustion described in Section 3.2.1.

Finally, note that weakening the value relation does not make sense for integer-overflow
errors. The weakened value relation mentioned in the “weaken value relation” column of Ta-
ble 3.1is ~%y = {(n,nmod 2%) | n € Z}, i.e., mapping mathematical integers in the source
language to their value modulo 2% where k is the bit-width of integers in the target. This is

clearly nonsensical—it does not preserve integer values larger than 2% — 1.

3.2.3 FLOATING-POINT IMPRECISION

A common source of errors and unexpected behavior in programs is floating-point impre-
cision [13]. Suppose we have a high-level language that provides arbitrary-precision rational
numbers as a primitive, and a target language that supports floating point numbers according
to astandard such as IEEE 754 [20]. These designs match the source programmer’s intuition
for non-integer arithmetic and the properties of real-world computing hardware, respectively.
The naive approach is to simply compile these arbitrary-precision rational numbers to target
floating-point numbers. However, floating-point rounding errors and imprecision can accu-
mulate, causing the compiled program’s behavior to diverge from that of the source.
Perhaps the most common adaptation is to modify the source language, allowing float-

ing point numbers as primitives and not arbitrary precision rationals. This is the approach

31

taken by, for example, Java, OCaml, and Python.§ Furthermore, it allows the compiler to take
advantage of hardware-level support and optimizations for floating-point arithmetic, improv-
ing performance. Again, however, it may negate some of the conveniences of using high-level
languages, since programmers must manually avoid generating floating-point imprecision er-
rofrs.

Another possible adaptation is to modify the compilation strategy: compile rational
numbers to (numerator, denominator) integer pairs. Similar to using bignums to repre-
sent arbitrary-width integers, this adaptation avoids the mismatch in representation between
source and target, allowing us to prove a correctness theorem of the form of Theorem 2. How-
ever, this design may result in poor performance compared to target-language support for
floating-point operations: simple operations at the source level such as addition and com-
parison now require multiple target-level additions and multiplications, and memory con-
sumption may be higher (depending on the bit-widths used). In practice, a combination of
these two adaptations may be preferable: many languages expose floating-point numbers as
the primitive data type and provide library support for rational-number arithmetic using an
integer pair or similar representation.

In cases where the loss of precision is acceptable, however, it might be preferable to compile
rational numbers to floating-point numbers. Note that some loss of precision is inevitable,
since some rationals, such as %, can not be represented exactly as a floating point number.

In this case, we can parameterize Theorems S and 6 with a bound ¢ for the acceptable loss

of precision. The error would be that some floating-point variable contains a value that dif-

§Interestingly, as noted in Section 3.2.2, Python takes a different approach for integers, supporting un-
bounded integers in the source language.

32

fers by more than € from the value of the corresponding source rational variable. However,
unlike the other target-language errors we discuss, this error is #nobservable: a program execu-
tion cannot detect when the error exceeds the permitted bound. Thus the per-execution and
prefix-correct theorems provide little value: they guarantee that either the execution is cor-
rect (i.e., within acceptable precision bounds) or it is not, and we have no simple mechanism
to discover which is the case.

By contrast, using the per-program correctness theorem adaptation entails determin-
ing statically whether a particular program will encounter a floating-point imprecision error,
avoiding the issue of imprecision being undetectable at runtime. Previous work has used a
variety of techniques to approximate floating-point imprecision in programs. For example,
Titolo et al. [44] use abstract interpretation to soundly approximate accumulated floating-
pointimprecision at each program point. Their tool, PRECiSA, produces both these approx-
imate bounds and a formal proof certificate that the bounds are sound. We could incorporate

such an analysis into an adaptation of Theorem 7 as follows:

VS € Source, Ve € Q, approx(S, &) —
Vt' € Trace™, [S]c~ ¢ = Tt € Trace™, S~ t At=rt
where approx(S, €) holds if and only if € is a sound approximation to the imprecision that
can accumulate in [S]¢, and t &7 t’ holds if and only if t and t’ are the same up to ¢ floating-

point imprecision between corresponding values. This design also contains elements of the

weakening the value relation adaptation, but note that simply weakening the value relation

33

without a statically verified bound is impossible: for any ¢, it should be possible to write a
program that eventually accumulates at least € floating-point imprecision.

Additionally, note that adapting Theorem 7 may require that control flow and externally
visible events do not depend on comparison of rationals. For instance, consider the program
if x > y then output("yes") else output("no") (where x and y are rational vari-
ables). For values of x and y that are close together, acceptable floating-point imprecision
might change which branch is taken, producing irreconcilable traces in the source and target
semantics. This is another drawback to the per-program correctness theorem adaptation rela-

tive to the modified compilation strategy discussed earlier, which entails no such restriction.

3.2.4 UNREPRESENTABLE INPUT

Programmers expect high-level languages to provide ergonomic abstractions for data types
and data structures. Compilers for these languages must compile these abstractions to lower-
level representations. When the source program takes a value of one of these types as input,
the compiled code receives bytes that should conform to the chosen representation; a target-
language error can occur if the input bytes do not match that representation. This issue can
arise when reading from a command line or a file, or when using a foreign function interface
to receive objects from another language.

As an example, consider a source language with boolean values true and false, compiled
to a target language that has only 32-bit integer values. If we compile true to 1 and false to 0,
the target value 10 would be unrepresentable as a boolean variable. The adaptation of mod-

ifying the source language would mean defining the source-level input() primitive to read

34

and return only 32-bit integers, requiring the programmer to choose how to map integers to
boolean values. This is suitable for this simple example, but for more complex data types this
would require the programmer to know and implement details of the memory representa-
tions used by the compiler. Alternatively, we could choose a modified compilation strategy
in which source and target values are structurally identical —in this case, allocating only one
bit for each source boolean variable. This avoids the unrepresentable input issue entirely, but
may not be feasible for complex data types.

We can also use the per-execution and prefix-correct theorems to account for cases of
unrepresentable input. For every source input() call, the compiler could insert code to vali-
date the received input against the desired representation and raise a target-language error in
cases of invalid input. We could design such a compiler to satisfy straightforward instantia-
tions of Theorems 5 and 6. A per-program correctness theorem is impossible here, since
inputs cannot be analyzed at compile time.

An alternative adaptation to the correctness theorem is to weaken the value relation by
allowing multiple values at the target level to map to the same source value, instantiating
Theorem 8. For the example of a boolean source and 32-bit target, suppose the compiler
treats 0 as false and all nonzero values as true. Define the following relation on source and

target values:
~y = {(false, 0)} U {(true,n’) | n’ # 0} U {(n,n")}

where n, n’ range over 32-bit integers. Then, define ~7 in Theorem 8 by lifting ~y,, such that

~7 t' holds if and only if for every pair of corresponding values v, v/ that appearin t and t/,

35

we have v ~y, v/. We have effectively defined the problem of unrepresentable input away, so
the target program does not have to crash upon unrepresentable input. However, this design
may not always be possible: for complex data types, there may be no good way to map bit

sequences that do not satisfy the representation to particular instances of the data type.

3.2.5 I/O FAILURE

Programs interact with their environment by means of potentially unreliable input-output
constructs, including files, the command line, shared memory, a graphical device, or the net-
work, each of which may fail. However, high-level language designers may not want to expose
the details of handling I/O, instead hiding those details inside the compiler behind simple
input() and output() primitives. With this design, I/O failure becomes a target-language er-
ror which is unrepresentable in the source, posing issues for verified compilation.

A simple adaptation is to modify the source language such that input() and output()
can fail. Binary success or failure can obscure the low-level details that the source language is
supposed to abstract over, while avoiding the need for the compiler to try to hide the underly-
ing failure in some way. This is the approach most high-level languages take, and is arguably
the most “principled” approach as well.

We consider other designs for the sake of completeness. It is straightforward to adapt the
per-execution and prefix-correct theorems: compilers satistying the resulting correctness
theorems do not force the source programmer to explicitly handle I/O failure, instead pro-
ducing programs that crash if an I/O call fails. Note, however, that it is impossible to adapt

the per-program correctness theorem to this setting, since I/O errors cannot be analyzed

36

statically. Similarly, since the error does not involve the values of variables, we would not be
able to weaken the value relation appropriately. Finally, modifying the compilation strat-
egy to avoid the issue could entail retrying the I/O operation until it succeeds, which (while
potentially of some utility in practice) would fail to provide any universal guarantees without

additional assumptions.

3.2.6 DYNAMIC LINKING FAILURE

Dynamic linking is present in many modern programming languages, allowing programs to
link to precompiled binaries or bytecode at runtime. This can produce a target-language error,
however, if the linked file is incorrectly formatted or not found. Since the source language
usually hides the details of linking from the programmer, this error is unrepresentable at the
source level. Superficially, this error seems like a case of I/O failure, since it results from failure
to read a particular file. However, dynamic linking errors can occur anywhere in the program,
without requiring any explicit I/O—they may be generated when a library is loaded, or only
when code from a linked library is actually called.

Although there are important differences with I/O failure, the adaptations for verified
compilers are similar. A straightforward approach is to modify the source language to al-
low dynamic linking to fail, as exemplified by Java: the Java 16 language specification [18]
states that if an error occurs during class loading, a Java error of class LinkageError will be
thrown when the running code attempts to use the class that failed to load. This error can
be caught at the source level, meaning that Java programs could in principle try to recover

gracefully from a dynamic linking error. Even if the error is fatal (rather than catchable), its

37

existence at the source level allows us to prove a standard semantic preservation theorem such
as Theorem 2.

Alternatively, we could straightforwardly adapt the per-execution and prefix-correct the-
orems to account for dynamic linking errors. We would not need to allow linking to fail at
the source level; rather, the theorem would implicitly require dynamic linking errors to cause
the program to crash. On the other hand, we could not use the per-program correctness
theorem, nor could we weaken the value relation, for the same reasons as discussed in Sec-
tion 3.2.5. Attempting to discern a modified compilation strategy that could account for
this error leads us to impractical designs such as attempting to download the missing linked

library from some network repository.

3.2.7 PROCESS INTERRUPTION

The code emitted by a compiler may be executed on a variety of platforms, but in most cases it
will run in a user-privileged process under some operating system. An accurate target seman-
tics, then, must also account for behaviors at the target level caused by the operating system.
These may include various system calls, such as for device communication, resource manage-
ment, and process control. We could imagine augmenting the target semantics with a set of
built-in system calls that have the appropriate effects on the modeled machine state.
Furthermore, operating systems also have behaviors and eftects that are not directly in-
voked by a running process. For example, other processes or the operating system may force
the process to terminate by a mechanism such as POSIX signals [21]. Verified compilers may

or may not need to model signals and other such behaviors explicitly, but doing so increases re-

38

alism and reduces the gap between the model used for verification and the actual system that
will run the compiled code. Furthermore, as discussed in Chapter 1, users of verified com-
pilers who compose the compiler correctness theorem with source-level verification results
obtain an end-to-end theorem that more accurately represents the properties of the resulting
executable.

However, some process interruptions via signal (such as SIGKILL) are target-language er-
rors that cannot be usefully represented in the source. This presents issues for verified com-
pilers: clearly, a target program that terminates prematurely due to a signal or interruption
does not have the same behavior as its source.

We note that modifying the source language is not useful: doing so would require us to
add programmer-visible source constructs that handle interrupts, but—Dby definition—a pro-
cess that has been interrupted cannot continue executing in order to process the interrupt.?
Similarly, modifying the compilation strategy seems to require the compiler to insert code
to ignore interrupts into all programs; again, this cannot generally be done.

We thus consider adaptations to the compiler correctness theorem. Most generally, a pro-
cess may be interrupted and terminated at any time. We could therefore instantiate the prefix-

correct theorem, giving the following adaptation of Theorem 6:
Theorem 9 (Prefix-correct theorem for process interruption).

VS € Source, Vt € Trace™, [S]c~t =

(S~ ¢tV (Im € Trace, 3t € Trace®,t = m ++[INT] A S~ m++1))

9Note that POSIX does allow processes to define signal handlers for some signals, but SIGKILL and similar
signals cannot be caught or ignored [21].

39

Our Coq implementation, described in Appendix A, uses Theorem 9 as its compiler correct-
ness theorem.

Note that we cannot use the per-program correctness theorem here, since there is no stat-
ically provable predicate over source programs that guarantees that a process cannot be inter-
rupted. Likewise, we cannot weaken the value relation, since interruption is not a property
of values in the languages.

In a sense, process interruption is the most pathological case for target-language error: it is
triggered by parts of the machine state totally external to the target model, and can occur at
any point during execution. We therefore cannot reason about it more carefully than Theo-
rem 9 in the context of semantic preservation. It may be possible to make weaker guarantees
about processes that are interrupted or induced to terminate prematurely; we discuss these

guarantees in Chapter 4.

3.3 PROOF TECHNIQUE FOR NONDETERMINISM

In Section 2.3.1, we noted that a standard proof technique for backward simulation compiler
correctness theorems involves proving both forward simulation for the compiler and deter-
minism for the target language. This technique is applicable for proving many of the theo-
rems presented in Section 3.2. For example, the correctness theorems stated in Section 3.2.1
are provable with this technique: memory exhaustion occurs deterministically when the tar-
get machine has allocated all available memory, so we can modify the semantics of the target

language to track the amount of memory allocated and deterministically issue the out-of-

40

memory error when necessary. Indeed, this is the technique CakeML uses to prove the two
versions of its correctness theorem described in Section 3.2.1 [43, 17].

However, some of the errors we discuss occur nondeterministically. In particular, process
interruption can occur at any point during execution of the program and can be triggered by
machine state not visible to the program. Thus, adding process interruption makes our target
semantics nondeterministic, precluding the unmodified use of the proof technique described
in Section 2.3.1.

In general, proving Theorem 6 for nondeterministic target languages may necessitate back-
translation. However, the nondeterminism introduced by process interruption is of a partic-
ularly simple form: either the machine executes the next instruction, or it is interrupted and
terminates immediately. More generally, nondeterministic target-language errors may cause
the machine to execute a short code segment to report the error, then terminate.

The simplicity of this nondeterminism suggests that it might be possible to prove adap-
tations of Theorem 2 using adaptations of the standard proof technique. In particular, for
every T € Target, we ought to be able to define some “normal” trace ¢, that is generated
when T executes without ever being interrupted. Then, we should be able to prove that ei-
ther T admits #,, or T admits some finite prefix of z, followed by the error. This is reminiscent
of the structure of Theorem 6: either the target trace is a source trace, or it is a finite prefix
of a source trace followed by the error. Indeed, if T = [S]¢ for some S, it appears that all we
would need to do to obtain Theorem 6 is show that S admits z,.

We formalize this intuition as follows. To formalize the notion of executing a target pro-

gram without encountering interruption, we separate the small-step relation of the target

41

language into two layers: a deterministic relation — 4. containing all the “normal” machine

transitions, and the full semantics —. We thus have the following inference rules for —-:

Definition 3 (Inference rules for — relation in terms of —g4e¢). Letting metavariable &

range over states of Target and e range over events:

€
g ?det OJ
NorRMAL — ErRr
Error

€
c—d O — Cerr
where o, is an irreducible error state.

We then define ~~ 4. and ~~ by substituting — 4. and —, respectively, into Definition 1.
The proof of Theorem 6 consists of proving two lemmas, corresponding to the two com-

ponents of the informal proof outline given above.

Lemma 1 (Backward simulation under deterministic semantics).
VS € Source,Vt € Trace™, [S]c~aget = S~~~ ¢

Lemma 1 is proved using the standard technique described in Section 2.3.1: we first prove a
forward simulation from Source to Target executed under the deterministic semantics, then

use determinism of — 4., to obtain the backward simulation result.

Lemma 2 (Modified backward simulation from full semantics to deterministic semantics).

VT € Target,Vt € Trace™, T ~ t —

(T ~>gec t V Im € Trace,t € Trace™,t = m ++[Error] AT ~go (m++1))

42

Lemma 2 can be thought of as a modified backward simulation between target programs
under the deterministic semantics and the full semantics. Since the full semantics are nonde-
terministic, back-translation is required. However, the back-translation is trivial: target states
are identical and execute in lock-step under either semantics (unless the error occurs), so we
can use an identity back-translation. This theorem can thus be proven straightforwardly by
induction on the derivations of — for each step in the derivation of T ~ z.

Finally, we can use Lemmas 1 and 2 to prove our top-level compiler correctness theorem,

which is equivalent to Theorem 6:

Theorem 1 (Prefix-correct theorem for target with nondeterministic error)

If Lemmas 1 and 2 hold, then we have:

VS € Source, Vt € Trace™, [S]c~t =
(S~ ¢tV Im € Trace,t € Trace™,t = m++[Error] AS~ (m++7))

Proof. LetS € Source and ¢ € Trace™ such that [S]¢ ~ 2.
By Lemma 2, we have:
([Slc ~~dec 2V Im € Trace,? € Trace™,t = m ++[Error| A [S]c ~dec (m++7)) .
But by Lemma 1, we have [S]¢ ~+4ec ¢ = S ~~ and
[Slc~dee m++¢ = S~>m—4+7.
We can apply these implications to obtain:

(S~» ¢V Im € Trace,? € Trace™,t = m ++[Error] AS ~ (m++7)). O

43

In summary, our adapted proof technique to prove theorems of the form of Theorem 6
for target languages with this kind of limited nondeterminism consists of the following three

steps:
1. Separate the semantics of the target language into — 4. and —.

2. Prove Lemma 1: backward simulation between the source language and the target lan-

guage executed under — 4.

3. Prove Lemma 2: modified backward simulation between the target language executed

under — 4. and under —.

Separating the target semantics into deterministic and nondeterministic layers lets us obtain
standard results under the deterministic semantics. Furthermore, we avoid having to reason
about nondeterminism in the target in the context of compiled source programs, sidestep-
ping the back-translation issue mentioned in Section 2.3.1.

We expect that this proof technique will straightforwardly generalize to any nondetermin-
istic target-language error whose effect is to execute some small code segment, then terminate.
However, undetectable errors that do not immediately terminate the target program would
preclude the use of this proof technique. In particular, the proof of Lemma 2 would require
a complex back-translation to map states in executions with errors to states in executions
without errors, and it is unclear how to construct such a back-translation in general.

We have developed in Coq an implementation of a verified compiler for a target language
featuring nondeterministic process interruption. Our implementation uses the technique we

describe above to prove that the compiler satisfies Theorem 9. In addition to demonstrating

44

the practical utility of this proof technique, our implementation provides an example of how
a verified compiler designer might instantiate one of our template correctness theorems for a
particular source-target language pair. More details about our Coq development are given in

Appendix A.

45

Weaker guarantees in the absence of

correctness

In this chapter, we discuss guarantees weaker than semantic preservation that can be proven
to hold over all target executions. These can give verified compiler users confidence that com-
piled programs that do encounter errors will not exhibit arbitrarily bad behavior, potentially
making the compiler more useful in practice.

In Section 3.1, we stated Theorems 5 and 6 which exclude executions that encounter target-

language errors from the semantic preservation guarantee. Users of verified compilers may

46

still want some guarantees about the compiled code that hold in @// executions, not just those
that do not encounter errors. As we have discussed, such guarantees must be weaker than se-
mantic preservation. However, they can guarantee that in cases where the program does en-
counter a target-language error, it does not execute arbitrary bad behaviors such as disclosing
memory or jumping to arbitrary code. We seek to capture these cases in our formalism.

We extend our model of execution to capture additional information 7, which consists
of the machine state at every program point in the execution of the program. To do so, we
redefine the reflexive transitive closure relation as —* : S, X Trace x S5 X S;, where

S} denotes a finite list of states from S, using the following three rules:

z, z
c—yd o5 g L5
, t, o vt o
U'H[*G‘ Ny N

Likewise, we redefine the infinite transitive closure relation as —> : S X Trace™ x 57°,

where $7° denotes an infinite list of states from Sy, using the following two rules:

t, z,

r— o 25> - 25>
t, ot 0o ent,d T 00
g—— g————

Now, let P~ £ be the predicate generated by using these modified definitions of —* and
—° in Definition 1. Intuitively, P~5 ¢ denotes that program P admits trace # with machine
states 7 during execution. The machine configurations appearing in 7 contain all program
state used by the semantics of the language of P. These configurations could include register

state, stack and heap memory, a continuation, or local variables, depending on the semantics

47

of the language of P. Such machine state is not externally visible, so top-level compiler cor-
rectness theorems generally do not mention it. However, if the program terminates prema-
turely due to a target-language error aspects of this state may become visible, meaning that
we would want to give guarantees over those aspects as well as the externally visible events
discussed in the rest of this thesis. Furthermore, some of the weaker guarantees of interest
involve compiler-enforced representation invariants, which are captured only in 7.

We can then give the following template theorem statement for stating guarantees that

hold over all executions in the target language:

Theorem 10 (Guarantee over all target executions).
VS € Source, Yz € Trace™, [S]c~t = Q(7)

where Q is a predicate enforcing the safety property of interest over 7.

It may not be immediately obvious that Theorem 10 can be proved without running into
the issue of the target-language error being unrepresentable in the source language. After all,
the theorem quantifies over source programs in Source. Note, however, that Theorem 10
does not mention execution of a source program. Instead, we effectively quantify over exe-
cutions of all possible outputs of compiler C. Furthermore, since Q is not given the source
program as an argument, we cannot choose a predicate Q that makes Theorem 10 equiva-
lent to Theorem 2 or any other semantic preservation result. Thus, proofs of Theorem 10 do
not need to use the source semantics in which errors are unrepresentable. Consequently, any

predicate Q that satisfies Theorem 10 will hold for all executions of compiled code.

48

4] EXAMPLE PREDICATES

We informally describe examples of predicates Q that may be of interest in various settings.

CONTROL-FLOW INTEGRITY. Theorem 5, the per-execution correctness theorem, allows
target programs to have any behavior that terminates with a target-language error. In prac-
tice, we may want to prevent execution of arbitrary code in executions that encounter errors.
For an assembly-like target, this could be expressed by a safety property over the instruction
pointer: in all executions, the instruction pointer should remain within the code segments of
the currently running program. The proof that such a guarantee holds would likely require
proving that the code generated by the compiler jumps only to appropriate targets. More
sophisticated models of the source program’s control flow could be used to more precisely

restrict all target executions, with correspondingly greater proof effort.

MEMORY SAFETY. We may wish to prove that target-language code does not violate mem-
ory safety even in cases of error. For a source language with modules, objects, or other forms
of encapsulation, we may wish to enforce a stronger guarantee: for instance, that only code
from module M can directly manipulate state owned by M. Such an encapsulation guarantee
might help contain the effects of a target-language error to just the module that encountered
the error, even though the semantics of the target-language execution may differ significantly

from any possible source-language execution.

GRACEFULEXIT. We may wish to prove that upon premature exit due to an error, the com-

piled code leaves the machine in a clean or safe state. What precisely constitutes a clean state

49

will depend on the particular system, but could include properties such as ensuring that files
are closed, that network connections are appropriately terminated, or that secure information
is not left in memory locations that could become externally visible. These requirements can
be expressed as safety properties over the last state in 7, and proven to hold by reasoning about
the code that handles errors and terminates the program. Note that for some errors—such as
process interruption and memory exhaustion—the error condition may not allow any code

to execute after it arises, making graceful exit impossible.

50

Related work

In this chapter, we discuss key contributions in verified compilation and related fields in order

to situate our work within the literature.

5.1 COMPLEX TARGET MODELS

There is a significant body of work examining ways of extending compiler correctness theo-
rems for complex target languages and machine models. This work encompasses both theo-
retical frameworks that account for target-language errors and implementations of verified

compilers for specific language pairs.

51

On the theoretical side, Abate etal. [1] present a general definition of compiler correctness’
parameterized on a relation between traces, equivalent to our Theorem 8. They show that by
defining the trace relation appropriately, Theorem 8 can account for a variety of differences
in the externally visible behaviors of the source and target languages, including some target-

language errors. In particular, defining ~7 as
{(t,t) | (t=1¢) v (3m’ € Trace,t’ = m' ++[err])}
in Theorem 8 produces a theorem equivalent to Theorem 5. Similarly, defining ~7 as
{(t,) | (t=1t) V (3m € Trace,m’ € Traceem =m' Am <t At = m’ ++[err])}

in Theorem 8 produces a theorem equivalent to Theorem 6. The authors describe how to
choose trace relations that model the top-level correctness theorems of CompCert and the
original version of CakeML, as well as a system similar to our example for unrepresentable
inputin Section 3.2.4. Note that since their relation is parameterized over traces, it cannot be
used to encode a per-program correctness theorem analogous to our Theorem 7. Since their
focus is purely on compiler correctness theorems, they also do not discuss the first three adap-
tations we described in Section 3.1: modifying the source, modifying the target, and modify-
ing the compilation strategy.

On the implementation side, past work has built verified compilers that account for some
of the specific errors we describe in Section 3.2. Férée et al. [15] build a verified implementa-

tion of file I/O for CakeML, accounting for nondeterminism in the file system. They specify

*Definition 1.2 in Abate et al. [1].

52

low-level, nondeterministic implementations of read() and write(), high-level versions
that hide the nondeterminism behind repeated calls to the low-level versions, and the liveness
property that “the file system eventually reads/writes at least one character.” Their design
combines elements of our modify-the-source and modify-the-compilation-strategy adapta-
tions.

Boldo et al. [9] implement and verify compilation of floating-point arithmetic in Com-
pCert, proving that the compiler emits code that respects the semantics of floating-point op-
erations in C. This requires them to formalize the IEEE-754 floating-point standard in Cogq.
C has floating-point numbers, as opposed to rationals, so this work falls under our modify-

the-source adaptation.

5.2 SEPARATE COMPILATION

One of the key recent directions in verified compilation research has been verification of sep-
arate compilation: compiling partial programs such that their compositions obey correctness
guarantees. This work is largely orthogonal to our focus on target-language errors, but sep-
arate compilation may introduce new errors that can be addressed with the adaptations we
describe: for example, our approaches to dynamic linking failure may be appropriate when
constructing the top-level correctness theorem for the composition of separately compiled
programs. Furthermore, the considerations we identified are also important when evaluating

separate compilation designs.

53

Patterson and Ahmed [36] give a general compositional compiler correctness theorem'
whose parameters can be instantiated to give a variety of theorems used by existing verified
separate compilation work. Their theorem requires definitions of various components of
the linking system, including the language in which linking is done, the set of all programs
that can be linked, and lifting functions from the target to the linking medium (to produce
“source-like” components whose behavior the target components should refine). This theo-
rem gives easily understandable guarantees once parameters are chosen, but depending on
the setting, proving it may require difficult back-translations from target to source.

SepCompCert [23] extends CompCert with separate compilation, albeit with the restric-
tion that only components compiled by SepCompCert can be linked. Its theorem and formal-
ization are easy to understand and relatively straightforward to prove, but its set of linkable
components is somewhat constrained. Compositional CompCert [42] takes a different ap-
proach, allowing for linking components from any language and compiler using CompCert’s
memory model. To support this larger set of linkable programs, its theorem statement is more
complex than SepCompCert’s and its proof is significantly more difhicult. CompCertM [41]
bridges the gap between SepCompCert’s and Compositional CompCert’s approaches: it al-
lows linking with components written in other languages (in its case, handwritten assembly),
but it develops a novel verification technique that allows it to avoid some of the proof over-
head incurred by Compositional CompCert. Its top-level correctness theorem and formalism
are still somewhat complex, however, since they must account for linking with components

in different languages.

"Theorem 4.1 in Patterson and Ahmed [36].

S4

5.3 SECURE COMPILATION

Secure compilation is an increasingly important and related area that studies how to construct
compilers that emit code satisfying the same security properties as the input source. For ex-
ample, compilers for source languages with public and private annotations for local variables
need to store private variables so that their values cannot be accessed by foreign code [35].
Similar to our work on target—language errors, proving preservation of security properties
requires reasoning about behaviors of the target language that cannot be represented at the
source level. In this setting, adversaries are typically represented by contexts in which source
or compiled code is executed; the context can be thought of as a program with a hole into
which the source or compiled code is inserted. While the semantics of high-level languages
might restrict the context to entering the source program only via normal function calls, an
assembly-like target context might be able to jump to arbitrary locations in the compiled code,
creating security vulnerabilities not present in the source program.

Patrignani et al. [35] survey a variety of approaches to building provably secure compil-
ers. They focus on the criterion of full abstraction, which requires that programs that are
indistinguishable by adversarial contexts at the source level must also be indistinguishable by
adversarial contexts at the target level. This criterion is attractive since it means that source
programmers can understand the security properties of their code without reasoning about
the target semantics. Patrignani et al. [35] discuss ways that secure compiler writers might
achieve full abstraction, ranging from developing sophisticated type systems for target lan-

guages to inserting runtime checks or cryptographic operations during compilation.

55

Full abstraction is a very strong security property that may be difficult to prove, and it may
be impossible in the presence of side-channels [2]. Abate et al. [2] explore a broad range of
security guarantees characterized in terms of execution traces of programs similar to the trace-
based compiler correctness theorems discussed in our work. Their approach is also similar to
ours in that they seek to systematize a large space of possible designs. In their case, the designs
correspond to classes of execution trace properties of varying expressive power, representing
attackers with varying capabilities.

Evaluation of the security implications of our adaptations is beyond the scope of this the-
sis. However, the target-language errors we examine could be important sources of security
vulnerabilities. We hope that future work will examine our adaptations from a security point
of view—in particular, investigating what security properties hold for a compiler that does

not satisty full semantic preservation.

56

Conclusion

In this thesis, we explored and systematized the design space faced by writers of verified com-
pilers when adapting their systems to account for errors in the target language. We categorized
these adaptations according to the component of the verified compiler they modify and gave
template theorem statements for adaptations that modify the compiler correctness theorem.
We then applied each of these adaptations to seven representative types of target-language
error, showing that approaches that are suitable or commonly used for one error may be in-
applicable or even absurd for another. Noting that some errors make the target language non-

deterministic, we developed an adaptation to the standard compiler correctness proof tech-

57

nique that accounts for this limited nondeterminism with relatively minimal proof overhead.
Given that errors prevent us from proving correctness for every target execution, we consider
guarantees that do hold over all executions and can prevent specific unreasonable behaviors.
Our comparison and evaluation of these designs has been guided by four key considerations:
precision, simplicity, realism, and provability. Future builders of verified compilers can use
our systematization when designing their own systems, choosing appropriate adaptations for
their particular target language and setting. Users of those compilers can, in turn, compose
our theorems with guarantees they produce in other stages of the code creation pipeline in
order to understand exactly what properties their executables ultimately satisty.

There are a few possible directions for future work based on this project. First, many of the
errors we discussed have not been explicitly included in the target-language models of existing
verified compilers. We hope that future verified compiler writers will find our systematization
of the design space of adaptations useful when developing their own systems. Second, we
hope that this work will inspire the research community to develop more adaptations for
verified compilers to account for target-language errors, and to evaluate these adaptations
in light of our systematization. Third, we hope that future work will examine the security
implications of the errors we model and the adaptations we propose. In particular, given that
target-language errors prevent us from proving full semantic preservation, it is important to
understand what security properties hold for a compiler that does not satisfy full semantic

preservation.

58

A verified compiler for a nondeterministic

tar get

We summarize our implementation in the Coq proof assistant of a verified compiler satisfy-
ing Theorem 9 and using the proof technique we described in Section 3.3. The full source
code of our Coq development is available at https://github.com/pratapsinghl729/
adapting-verified-compilation.

Our verified compiler implementation is adapted from Xavier Leroy’s tutorial “Proving

the correctness of a compiler,” most recently presented at the EUTypes Summer School in

59

https://github.com/pratapsingh1729/adapting-verified-compilation
https://github.com/pratapsingh1729/adapting-verified-compilation

2019 [29]. Leroy presents a stylized verified compiler from a simple imperative source lan-
guage to a stack-machine target, as well as some verified optimization passes at the source
level. We choose this implementation as our base because it is rich enough to capture some
of the complex control-flow constructs that can make verifying a compiler difficult, but also
simple enough that adding new features does not require prohibitive proof effort (unlike a
“production-quality” system such as CompCert). Past work, including Abate et al. [1], has
also adapted Leroy’s compiler to demonstrate new formalisms and features for the same rea-
sons.

The two main features we require that are not present in Leroy’s compiler are explicit traces
of events and nondeterminism via process interruption in the target language. For simplicity,

we assume that both the source and target languages have the same externally visible events:

* IN(z) means take z as input (where z € Z).

* OUT(z) means give z as output (where z € 7).

Note that to avoid reasoning about fixed-width integer overflow, we use mathematical inte-
gers in our language. A more realistic verified compiler might combine this design with one
of the adaptations described in Section 3.2.2.

Additionally, we need to add a model of the state of the external world with which the exe-
cuting programs interact: this must provide inputs to and receive outputs from the program
currently executing. The external world is generally nondeterministic, but since this nonde-
terminism is external to the program under execution, we can abstract it out of our source
and target semantics [27]. Let G denote an external world state, and define the following two

functions:

60

* take(G) maps world state G to integer z (given as input) and new world state G'.

* give(G, z) maps world state G and integer z (received as output) to new world state G'.

Our compiler correctness theorem requires that both the source and target programs begin

executing in the same world state G.

SOURCE LANGUAGE: IMP The source language is IMP, a simple imperative language fea-

turing arithmetic and boolean expressions, conditionals, and while loops. The syntax of

IMP is given in Figure A.1.
arithmetic expressions ~ a:= x|z|a+ala—a
boolean expressions b:= TRUE |FALSE|a=a|a<a|NOTh|bANDbD
commands c::= SKIP | x:=a | ¢;c | INPUT x | OUTPUT a
| IF b THEN c ELSE c | WHILE b DO ¢
continuations k ii= Kgop | C33k
stores su= Var—7Z

Figure A.1: Syntax of IMP. Metavariable x ranges over variables in Var, and metavariable z ranges over integers. We as-
sume that stores s are total and unambiguous, i.e., there is exactly one mapping in the store for each program variable.

The operational semantics of IMP are given in Figure A.2. We give a labeled transition
semantics in terms of continuations and with an explicit store containing variables. IMP states

thus consist of a command under execution, a continuation, a store, and a world state.

61

(an,s) —.z1 (a2,8) —. 2»

(x,5) —, s(a) (a; + az,8) —, 2 At
(ab S) —>a Z; (aZa S) —>ﬂ Z) .
S Z=21—2
(z,s) —, z (a; —az,s) —, 2
(b,s) —, TRUE (b,s) —, FALSE

b € {TRUE, FALSE
{ ’ ! (NOT b,s) —», FALSE ~ (NOT b,s) —, TRUE

(b,S) —b b
(a17 S) _>ﬂ Z; (32,5) _>d Z ile # 2

<a17 S) _>ﬂ Z; (alys) _)ﬂ Z

ile =22

(a; = ay,5) —>, TRUE (a; = ay,s) —>, FALSE

(al,S) —a 21 (3275) —4 Z2 ile S 2 (alvs) —a 7 (32,5) — a2 ile > 2

(ay < ay,s) —>, TRUE (ay < ay,s) —>, FALSE
/ /
(brs) = b (b25) =03y e
(b; AND b,,s) —, TRUE
bi,s) —, by (bs,s) —; b}
(biys) —s b1 (by5) —5 by if by = FALSE or b}, = FALSE
(b; AND b,,s) —; FALSE

(a,s) —, z
(x:=a,k,s,G) — (SKIP, k, [x :=2]|s,G) (c;¢5,k,5,G) — (c1,¢55;k, 5, G)
(b,s) —», TRUE
(IF b THEN ¢, ELSE ¢,, k, s, G) — (¢}, k, s, G)
(b,s) —, FALSE
(IF b THEN ¢, ELSE ,,k, s, G) — (c,, k,s,G)
(b,s) —, FALSE
(WHILE b DO ¢, k, s, G) —> (SKIP, k, s, G)
(b,s) —, TRUE
(WHILE b DO ¢, k, s, G) —> (c,WHILE b DO c;; k, s, G)
take(G) = (2, G)
(SKIP,c;; k,s,G) — (c, k,s,G) (INPUT x, k, s, G) gl (SKIP, k, [x := z]s, G')
(a,s) —,z give(G,z) =G
(OUTPUT a, k, s, G) o) (SKIP, k, s, G')

Figure A.2: Small-step operational semantics of IMP.

62

TARGET LANGUAGE: MACH The target language is MACH, a simple stack machine fea-
turing conditional and unconditional jumps, arithmetic instructions, and an explicit variable

store. The syntax of MACH is given in Figure A.3.

instructions i ::= Iconstz | Ivar x | Isetvar x | Iadd | Iopp | Ibranch 8
| Ibeq (8, 9) | Ible (3, 9) | Iinput | Ioutput | Thalt

programs C ::= list of instructions i

stacks to= []]z:t

stores su= Var—= Z

Figure A.3: Syntax of MACH. Metavariable x ranges over variables in Var, metavariable z ranges over integers, and
metavariable d ranges over program offsets. We assume that stores s are total and unambiguous, i.e., there is exactly one
mapping in the store for each program variable.

The operational semantics of MACH are given in Figure A.4. MACH states consist of a
program, a program counter, a stack, a store, and a world state. We model interruption as a
single-step transition, emitting the interruption event IN'T, to a special configuration (IN'T)
from which no further steps are possible. A more realistic semantics could model program
termination as taking multiple steps, but as long as the program cannot be interrupted more

than once, this would not meaningfully change the proof. Rule INTR is the instantiation of

Rule ERR specified in Definition 3.

CoMPILATION SCHEME The compilation scheme is essentially unmodified from Leroy’s
tutorial [29]: we add only cases for the compilation of INPUT x and OUTPUT x. We refer read-

ers to our Coq development for details of the compilation scheme.

63

C[pc] = Iconst z
(C,pc, t,s,G) — (C,pc+1,z::t,5,G)
C[pc| = Ivarx
(C,pc, t,s,G) — (C,pc + 1,s(x) :: t, 5, G)
C[pc] = Isetvar x
(C,pc,z::t,8,G) — (C,pc + 1, t, [x := z]s, G)

C[pc] = Iadd R
(C,pc,z,::2::t,8,G) — (C,pc +1,z::t,5,G) ~ b
Clpc] = Iopp Y= 2

(C,pc,z::t,5,G) — (C,pc+ 1,7 ::t,5,G)
C|pc] = Ibranch d
(C,pc, t,s,G) — (C,pc+ 1+ 39,¢,s,G)
Clpc] = Ibeq (31, 3>) =
(C,pc,zy::2 08,8, G) — (C,pc + 1+ 3, t,5,G)
C[pc| = Ibeq (31, 9,)

(C,pc,zy::21 08,8, G) — (C,pc+ 1+ 35, t,5,G)
C[pc| = Ible (34, 9,)
(C,pc,zy::7::t,8,G) — (C,pc + 1+ 3, ¢t,5,G) ¢
C[pc| = Ible (34, 9,)

(C,pc,zy::21 08,8, G) — (C,pc+ 1+ 35, ¢,5,G)

Clpc] = linput take(G) = (z,G)

(C,pc, t,s,G) e (C,pc+1,z::t,5,G)
Clpc| = Ioutput give(G,z) = (G')

(C,pc,z::t,s,G) Ur) (C,pc+1,t,5,G)

I
IR (C,pe, t,s,G) EAEN (INT)

Figure A.4: Small-step operational semantics of MACH.

64

A.1 CORRECTNESS THEOREM AND PROOF STRUCTURE

Our top-level correctness theorem is Theorem 9. We present here the Coq definitions of our
top-level correctness theorem and of the two key lemmas in the proof for comparison with
those described in Section 3.3. The names of predicates and theorems were chosen to be evoca-
tive; we refer readers to the Coq development for full definitions of the predicates mentioned
in these theorems.

A small difference between our implementation and our formalism (as described in Sec-
tion 2.1) is that in Coq, we give separate definitions of the predicate P~ ¢ for the three kinds
of termination behavior: termination, silent divergence, or divergence with infinitely many
events. This allows us to avoid mixing induction and coinduction in our correctness proofs,
which can pose difficulties due to Coq’s presently limited support for coinduction. Our
proof requires a lemma stating that every execution either terminates, diverges silently, or
diverges with infinitely many events. This cannot be proved in Coq’s constructive logic [29];

we therefore assume the excluded middle axiom and give a classical proof of this lemma.

65

TOP-LEVEL CORRECTNESS THEOREMS

Theorem compile_program_correct_terminating:
forall c s g tr,
machine_terminates (compile_program c) s g tr ->
(exists s' g', imp_terminates c s g tr s' g') \/
(exists m, tr = m ++ [ev_intr] /\ imp_admits_finite c s g m).

Theorem compile_program_correct_diverging_silently:
forall c s g tr,
machine_diverges_silently (compile_program c) s g tr ->
imp_diverges_silently ¢ s g tr.

Theorem compile_program_correct_diverging_with_inftrace:
forall ¢ s g itr itr’',
machine_diverges_with_inftrace (compile_program c) s g itr ->
imp_diverges_with_inftrace ¢ s g itr' -> EqSt 1itr itr'.
These theorems instantiate Theorem 9 for this compiler. Note that only the first theorem,
compile_program_correct_terminatingfbrthetmnﬁnadngcaﬁ;aﬂowmfbrhnenup—

tion. This is because if the machine diverges, it cannot have been interrupted. An additional

wrinkle is the predicate EqSt, which defines equality on coinductive infinite traces.

66

BACKWARD SIMULATION FOR DETERMINISTIC SEMANTICS

Module Determ.

Theorem compile_program_correct_terminating_backward:
forall c s g tr s' g',
machine_terminates (compile_program c) s g tr s' g' ->
imp_terminates c s g tr s' g'.

Theorem compile_program_correct_diverging_silently_backward:
forall ¢ s g tr,
machine_diverges_silently (compile_program c) s g tr ->
imp_diverges_silently c s g tr.

Theorem compile_program_correct_diverging_with_inftrace_backward:
forall ¢ s g itr Hitr',
machine_diverges_with_inftrace (compile_program c) s g itr ->
imp_diverges_with_inftrace ¢ s g itr' -> EqSt +itr itr'.

DR

End Determ.

These theorems instantiate Lemma 1 for this compiler.

67

MODIFIED BACKWARD SIMULATION FROM FULL TO DETERMINISTIC SEMANTICS

Theorem prefix_correct_full_to_determ_semantics:
forall C s g tr,
machine_terminates C s g tr ->
(exists s' g', Determ.machine_terminates C s g tr s' g')
\/ (exists m, tr = m ++ [ev_intr]
/\ Determ.machine_admits_finite C s g m)
\/ (Determ.machine_goes_wrong C s g tr).

Lemma divergence_implies_determ_divergence_silent:
forall C s g tr,
machine_diverges_silently C s g tr ->
Determ.machine_diverges_silently C s g tr.

Lemma divergence_implies_determ_divergence_inftrace:
forall C s g itr,

machine_diverges_with_inftrace C s g itr ->
Determ.machine_diverges_with_inftrace C s g itr.

These theorems instantiate Lemma 2 for this compiler.

68

2]

(3]

[4]

[5]

[e]

References

Abate, C., Blanco, R., Ciobici, §., Durier, A., Garg, D., Hritcu, C., Patrignani, M.,
Tanter, E., & Thibaulg, J. (2020). Trace-Relating Compiler Correctness and Secure
Compilation. In P. Miller (Ed.), Programming Languages and Systems: Springer.

Abate, C., Blanco, R., Garg, D., Hritcu, C., Patrignani, M., & Thibault, J. (2019).
Journey Beyond Full Abstraction: Exploring Robust Property Preservation for Secure
Compilation. In IEEE 32nd Computer Security Foundations Symposium.

Agda Development Team (2021). The Agda Reference Manual, version 2.6.2.

Anand, A., Appel, A. W., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Bélanger,
O.S., Sozeau, M., & Weaver, M. Z. (2016). CertiCoq : A verified compiler for Coq.

Appel, A. W.(2015). Verification of a cryptographic primitive: SHA-256. ACM Trans.
Program. Lang. Syst., 37(2).

Barthe, G., Blazy, S., Grégoire, B., Hutin, R., Laporte, V., Pichardie, D., & Trieu, A.
(2019). Formal Verification of a Constant-Time Preserving C Compiler. Proc. ACM
Program. Lang., 4(POPL).

Beringer, L., Petcher, A., Ye, K. Q., & Appel, A. W. (2015). Verified correctness and se-
curity of OpenSSL HMAC. In 24th USENIX Security Symposium (USENIX Security
15) (pp. 207-221). Washington, D.C.: USENIX Association.

Beringer, L., Stewart, G., Dockins, R., & Appel, A. W. (2014). Verified Compilation
for Shared-Memory C. In Z. Shao (Ed.), Programming Languages and Systems (pp.
107-127). Berlin, Heidelberg: Springer Berlin Heidelberg.

Boldo, S., Jourdan, J.-H., Leroy, X., & Melquiond, G. (2015). Verified Compilation
of Floating-Point Computations. /. Autom. Reason., 54(2),135-163.

69

[10]

[16]

[17]

[18]

[19]

Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M. F., & Zeldovich, N.
(2016). Using Crash Hoare Logic for certifying the FSCQ file system. In 2016
USENIX Annual Technical Conference (USENIX ATC 16) Denver, CO: USENIX

Association.

Chlipala, A. (2013). Certified Programming with Dependent Types: A Pragmatic In-
troduction to the Coq Proof Assistant. The MIT Press. Cambridge: The MIT Press.

Coq Development Team (2020). The Coq Reference Manual, version 8.13.

Di Franco, A., Guo, H., & Rubio-Gonzilez, C.(2017). A comprehensive study of real-
world numerical bug characteristics. In 2017 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE) (pp. 509-519).

Erbsen, A., Philipoom, J., Gross,]., Sloan, R., & Chlipala, A. (2020). Simple high-
level code for cryptographic arithmetic: With proofs, without compromises. SIGOPS
Oper. Syst. Rev., 54(1), 23-30.

Férée, H., Aman Pohjola, J., Kumar, R., Owens, S., Myreen, M. O., & Ho, S. (2018).
Program Verification in the Presence of I/O. In R. Piskac & P. Ritmmer (Eds.), Veri-
fred Software. Theories, Tools, and Experiments (pp. 88-111).: Springer Intl. Pub.

GNU Project (2021). GCC, the GNU Compiler Collection.

Gémez-Londofio, A., Aman Pohjola, J., Syeda, H. T., Myreen, M. O., & Tan, Y. K.
(2020). Do You Have Space for Dessert? A Verified Space Cost Semantics for CakeML
Programs. Proc. ACM Program. Lang., 4(OOPSLA).

Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., Smith, D., & Bierman, G.
(2021). The Java Language Specification: Java SE 16 Edition.

Gu, R, Shao, Z., Chen, H., Wu, X. N., Kim, J., Sjéberg, V., & Costanzo, D. (2016).
Certikos: An extensible architecture for building certified concurrent OS kernels. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16) (pp. 653-669). Savannah, GA: USENIX Association.

70

[20]

[21]

[22]

[25]

[31]

IEEE (2019). IEEE Standard for Floating-Point Arithmetic. JEEE Std 754-2019 (Re-
vision of IEEE 754-2008), (pp. 1-84).

IEEE Std 1003.1 2018 Edition (2018). The Open Group Base Specifications Issue 2.

System Interfaces.

Isabelle/HOL Development Team (2021). The Isabelle/HOL Reference Manual, ver-
sion Isabelle2021.

Kang, J., Kim, Y., Hur, C.-K., Dreyer, D., & Vafeiadis, V. (2016). Lightweight Verifi-
cation of Separate Compilation. SIGPLAN Not., 51(1), 178-190.

Kistner, D., Barrho, J., Wiinsche, U., Schlickling, M., Schommer, B., Schmidt, M.,
Ferdinand, C., Leroy, X., & Blazy, S. (2018). CompCert: Practical Experience on In-
tegrating and Qualifying a Formally Verified Optimizing Compiler. In 9th European
Congress Embedded Real-Time Software and Systems (pp. 1-9).

Kumar, R., Myreen, M. O., Norrish, M., & Owens, S. (2014). CakeML: A verified
implementation of ML. In Principles of Programming Languages (POPL) (pp. 179-
191).: ACM Press.

Lean Development Team (2021). The Lean Reference Manual, version 4.

Leroy, X. (2009a). A Formally Verified Compiler Back-End. /. Autom. Reason., 43(4),
363-446.

Leroy, X. (2009b). Formal verification of a realistic compiler. Communications of the
ACM, 52(7), 107-115.

Leroy, X. (2019). The formal verification of compilers (2019 EUTypes Summer
School).

Leroy, X., Appel, A. W,, Blazy, S., & Stewart, G. (2012). The CompCert Memory
Model, Version 2. Research report RR-7987, INRIA.

McCarthy, J. & Painter, J. (1967). Correctness of a compiler for arithmetic expressions.

71

[32]

[33]

Milner, R. & Weyhrauch, R. (1972). Proving compiler correctness in a mechanised
logic. Machine Intelligence, 7, 51-73.

MITRE Corporation (2020). Common Weakness Enumeration: Top 25 Most Dan-

gerous Softwaree Weaknesses. Technical report.

Muller, S. & Hoffman, J. (2020). Combining Source and Target Level Cost Analyses
for OCaml Programs. Working paper.

Patrignani, M., Ahmed, A., & Clarke, D. (2019). Formal approaches to secure compi-
lation: A survey of fully abstract compilation and related work. ACM Comput. Surv.,
51(6).

Patterson, D. & Ahmed, A. (2019). The next 700 Compiler Correctness Theorems
(Functional Pearl). Proc. ACM Program. Lang., 3(1CFP).

Pierce, B. C. (2019). Types and Programming Languages. The MIT Press. The MIT

Press.

Pierce, B. C., Azevedo de Amorim, A., Casinghino, C., Gaboardi, M., Greenberg, M.,
Hrigcu, C., Sjéberg, V., & Yorgey, B. (2018). Logical Foundations. Software Founda-

tions series, volume 1. Electronic textbook.
Python Software Foundation (2021). Python 3.9.5 Documentation.

Sangiorgi, D. (2011). Introduction to Bisimulation and Coinduction. Cambridge:
Cambridge University Press.

Song, Y., Cho, M., Kim, D., Kim, Y., Kang, J., & Hur, C.-K. (2019). CompCertM:
CompCert with C-Assembly Linking and Lightweight Modular Verification. Proc.
ACM Program. Lang., 4(POPL).

Stewart, G., Beringer, L., Cuellar, S., & Appel, A. W. (2015). Compositional Com-
pCert. SIGPLAN Not., 50(1), 275-287.

Tan, Y. K., Myreen, M. O., Kumar, R., Fox, A., Owens, S., & Norrish, M. (2016). A
New Verified Compiler Backend for CakeML. SIGPLAN Not., S1(9), 60-73.

72

[44] Titolo, L., Felit, M. A., Moscato, M., & Mufioz, C. A. (2018). An Abstract Interpre-
tation Framework for the Round-Oft Error Analysis of Floating-Point Programs. In I.
Dillig & J. Palsberg (Eds.), Verification, Model Checking, and Abstract Interpretation
(pp- 516-537).: Springer International Publishing.

[45] Yang, X., Chen, Y., Eide, E., & Regehr, J. (2011). Finding and Understanding Bugs in
C Compilers. SIGPLAN Not., 46(6), 283-294.

73

HIS THESIS WAS TYPESET using

IATEX, originally developed by Leslie
Lamport and based on Donald
Knuth’s TEX. The body text is set in 11
point Egenolff-Berner Garamond, a revival
of Claude Garamont’s humanist typeface.
A template that can be used to format a
PhD dissertation with this look and feel
has been released under the permissive
AGPL license, and can be found online at
github.com/suchow/Dissertate or from
its lead author, Jordan Suchow, at su-

chow@post.harvard.edu.

74

https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu
mailto:suchow@post.harvard.edu

	Abstract
	Contents
	Introduction
	Our contributions

	Background
	Preliminaries
	The Coq proof assistant
	Verified compilation

	Characterizing the design space
	Types of adaptation
	Types of errors
	Proof technique for nondeterminism

	Weaker guarantees in the absence of correctness
	Example predicates

	Related work
	Complex target models
	Separate compilation
	Secure compilation

	Conclusion
	Appendix A verified compiler for a nondeterministic target
	Correctness theorem and proof structure

	References

